Свойства меда

Категория: Крахмал, сахар, мед, кондитерские товары

Общие свойства меда являются результатом влияния комплекса отдельных групп веществ и характеризуют специфические особенности данного продукта. К важнейшим свойствам меда относятся вязкость, кристаллизация, гигроскопичность, плотность, оптическая активность, теплопроводность, теплоемкость, удельная электропроводность.

Вязкость меда имеет большое значение при откачивании его из сотов, фильтрации, розливе и других производственных операциях. Доброкачественный мед обычно бывает густым, вязким. Вязкость зависит от содержания в меде воды, состава сахаров и коллоидных веществ. При увеличении содержания воды вязкость уменьшается. Белки и другие коллоидные вещества увеличивают вязкость меда, но содержание их в меде незначительно. Чем больше в меде фруктозы (раствор фруктозы менее вязкий) и меньше высоких сахаров, тем меньше его вязкость. В значительной степени вязкость меда зависит от температуры. Вязкость меда, только что вынутого из улья и имеющего температуру 30°С, в 4 раза меньше, чем меда, остывшего до комнатной температуры. Поэтому мед рекомендуется откачивать на медогонке сразу же после взятия рамок из улья, не допуская охлаждения. При нагревании вязкость меда уменьшается. Это свойство используется при расфасовке меда в мелкую тару. Для достижения необходимой текучести минимальная температура медов с влажностью не более 19% составляет примерно 45°С.

Вересковый, в некоторой степени гречишный и другие виды меда обладают тиксотропными свойствами. Это значит, что вязкость таких медов значительно уменьшается от взбалтывания или перемешивания. Чтобы откачать вересковый мед, соты приходится сильно встряхивать в центрифуге.

Кристаллизация или “садка” меда — естественный переход из жидкого вязкого состояния в кристаллическое, не вызывающий ухудшения качества. Процесс кристаллизации обусловлен тем, что один из сахаров меда глюкоза находится в перенасыщенном состоянии. Фруктоза меда как более растворимый сахар кристаллизуется гораздо медленнее. При кристаллизации меда в осадок выделяются кристаллы глюкозы (в падевом — иногда кристаллы мелецитозы). Фруктоза остается в растворе и образует сверху вязкий слой или обволакивает кристаллы глюкозы.

В зависимости от размера кристаллов, точнее сростков, различают три вида закристаллизованного меда: крупнозернистый — размер кристаллов более 0,5 мм; мелкозернистый — кристаллы меньше 0,5-0,04 мм; салообразный — кристаллы размером 0,04 мм, неразличимые невооруженным глазом, при этом мед похож на сало. Характер кристаллизации зависит от скорости этого процесса. Чем быстрее кристаллизуется мед, тем мельче кристаллы. На скорость кристаллизации влияют cледующие факторы: наличие зародышевых кристаллов глюкозы (центров кристаллизации), состав, температура, влажность, перемешивание меда.

Быстрая кристаллизация центробежного меда происходит в результате наличия в нем микроскопических кристаллов глюкозы, которые служат центрами кристаллизации. Чем больше зародышевых кристаллов в меде, тем скорее он закристаллизовывается и тем меньшего размера получаются кристаллы. Центрами кристаллизации, по-видимому, могут быть и пыльцевые зерна, рассеянные в массе меда, а также посторонние примеси.

Кристаллизация меда зависит от его химического состава. Увеличенное содержание глюкозы и мелецитозы в меде ускоряет кристаллизацию; повышенное количество фруктозы, высших сахаров и коллоидных веществ делает мед более клейким и замедляет процесс кристаллизации.

Скорость кристаллизации зависит от температуры и влажности меда. Быстрее он кристаллизуется при температуре 14-24°С. Понижение или повышение данной температуры замедляет кристаллизацию, так как в первом случае увеличивается вязкость меда, а во втором — уменьшается перенасыщенность раствора глюкозы. При температуре 27-32°С мед не кристаллизуется, а при температуре около 40°С закристаллизовавшийся мед начинает растворяться. Колебания температуры оказывают различное влияние на скорость кристаллизации меда.

Мед с повышенной влажностью (незрелый) представляет менее перенасыщенный раствор глюкозы и кристаллизуется медленнее. Часто незрелый мед кристаллизуется не в сплошную однородную массу, а расслаивается на кристаллическую и сиропообразную части.

Перемешивание или взбалтывание меда ускоряет его кристаллизацию, так как кристаллы глюкозы при этом входят в соприкосновение со всей массой меда. В состоянии покоя мед кристаллизуется медленнее.

Знание закономерностей кристаллизации меда позволяет управлять этим процессом: ускорять его или замедлять и получать мед требуемой консистенции.

По характеру кристаллизации косвенно можно судить о доброкачественности меда. Зрелые высококачественные меда кристаллизуются сплошной однородной массой. Расслаивание меда при кристаллизации в большинстве случаев свидетельствуют о его незрелости. При этом жидкая часть меда имеет повышенную влажность и может быстро забродить. Неоднородная кристаллизация и расслаивание возможно и в доброкачественном меде, содержащем повышенное количество фруктозы, и поэтому он медленно кристаллизуется. Но такие сорта меда в продажу поступают в небольшом количестве.

При подогревании меда зародышевые кристаллы растворяются, и кристаллизация такого меда в связи с образованием крупных кристаллов идет медленно. Иногда мед вообще не кристаллизуется полностью, кристаллы оседают на дно или образуют причудливые разветвления в толще меда (напоминающие плесень), что вызывает сомнение в его доброкачественности.

Мед — продукт гигроскопичный. Гигроскопичность — особенность меда поглощать влагу из воздуха. Это свойство обусловлено высоким содержанием сахаров и, в первую очередь, фруктозы и некоторых несахаристых веществ. Гигроскопичность меда необходимо учитывать при его упаковке, хранении и промышленном использовании. Некоторые виды меда поглощают больше влаги, чем чистая фруктоза или инвертный сахар. Это свойство широко используется при изготовлении мучных кондитерских изделий — пряников, кексов, коврижек. Изделия медленнее черствеют, лучше сохраняют аромат.

Гигроскопичность меда предъявляет повышенные требования к деревянной таре для упаковки меда. Мед, затаренный в бочки, изготовленные из сырой клепки, может впитывать влагу из древесины. В результате этого бочки рассыхаются, и мед будет вытекать. Поэтому мед можно расфасовывать в деревянные бочки с влажностью древесины не более 16%.

Хранение негерметически упакованного меда во влажном помещении приводит к его разжижению, которое вызывает брожение. Для предупреждения этого мед рекомендуется хранить в сухих складских помещениях.

Плотность меда зависит от содержания воды и температуры. Чем выше содержание воды, тем ниже плотность, и, наоборот, чем ниже содержание воды, тем плотность выше. При содержании 16% воды и температуре 15 °С плотность меда составляет — 1,443, при 20 °С —1,431. При 18%-ном содержании воды и температуре 15 °С плотность меда составляет 1,429, при 20 °С — 1,417. При 20%-ном присутствии воды и температуре 15 °С плотность равна 1,409, а при 20 °С - 1,397.

Оптическая активность состоит в способности меда вращать плоскость поляризации света на определенный угол влево или вправо. Она зависит от состава углеводов, их соотношения и концентрации. Преобладание в меде фруктозы обусловливает повышенное левое вращение, а значительное количество сахарозы, мальтозы и мелецитозы - повышенное вращение вправо. Для фруктозы удельное вращение равно -92,4°, для глюкозы +52,7°, сахарозы +66,5°, мальтозы +130,4. На оптическую активность меда влияют также органические кислоты, белковые и минеральные вещества, величина pH и температура. Удельное вращение для цветочного меда составляет в среднем -8,4°, падевого меда — 0,17° (-10... +24°). Сахарный мед отличается более положительными средними показателями удельного вращения -0,26° (-1,5... +2,47°). Если мед закристаллизован, то определяют оптическую активность только после выдержки его водного раствора в течение суток, но поскольку по углеводному составу сахарный мед ничем не отличается от натурального, то определить натуральность по этому показателю не представляется возможным.

Теплопроводность меда зависит от содержания воды и степени его кристаллизации. Теплопроводность меда, находящегося в закристаллизованном состоянии (по данным НИИ пчеловодства), уменьшается с повышением температуры, а для жидких медов — увеличивается. Исключение составляет липовый, акациевый, гречишный и подсолнечниковый — жидкие виды меда, теплопроводность которых несколько уменьшается при влажности 16 и 18% и в температурном интервале 10-20°С. Четкой зависимости коэффициента теплопроводности исследованных закристаллизованных и жидких медов от содержания в них воды в температурном интервале 0-20°С не наблюдается, за исключением акациевого меда, у которого с увеличением содержания воды коэффициент теплопроводности увеличивается во всех температурных интервалах — от 0 до 60°С.

В остальных исследованных жидких медах с увеличением содержания воды коэффициент теплопроводности увеличивается в температурных интервалах 20-60°С. Из закристаллизованных медов наибольшую теплопроводность 0,2247/Вт(м • К) имеет подсолнечниковый мед с содержанием воды 16,7% в температурном интервале 0-10°С, а из жидких — гречишный мед О, 5911/Вт(м • К) с влажностью 21% в температурном интервале 50-60°С.

Минимальную теплопроводность имеет кипрейный мед с содержанием воды 21%: в закристаллизованном состоянии — 0,1015 Вт/(м • К) при 10-20° С; в жидком состоянии 0,1031 Вт/(м • К) при 0-10°С.

Теплоемкость меда зависит от агрегатного состояния, содержания воды и температуры. Теплоемкость многих монофлорных медов, находящихся в закристаллизованном состоянии, уменьшается с повышением температуры, а для медов, находящихся в жидком состоянии, увеличивается. Исключение составляют жидкие виды меда, рассматриваемые в температурных интервалах 10-20°С и 50-60°С и имеющие отдельные отклонения значений удельной теплоемкости от общей закономерности. У гречишного и липового закристаллизованного медов с увеличением содержания воды удельная теплоемкость увеличивается, у остальных исследованных закристаллизованных медов такой четкой зависимости не наблюдается. У жидких медов также наблюдается увеличение теплоемкости с увеличением содержания воды в них.

Из закристаллизованных медов наибольшую удельную теплоемкость 11552,6 Дж/(кг • °С) имеет акациевый мед с содержанием воды 21% в температурном интервале 0-10°С, а из жидких — гречишный мед 1742,6Дж/(кг • °С) с содержанием воды 21% в температурном интервале 50-60°С. Наименьшую теплоемкость имеет кипрейный мед с содержанием воды 21% в закристаллизованном состоянии 835,2 Дж/(кг • °С) в интервале температур 10-20°С и в жидком состоянии 941,0 Дж/(кг • °С) в интервале температур 0~10°С с той же влажностью.

Удельная электропроводность меда зависит от его происхождения, концентрации раствора и температуры. При температуре 20°С и разбавлении меда до 20% сухих веществ этот показатель колеблется в пределах 0,01-0,17 см/м. Имеется корреляционная зависимость между содержанием зольных элементов и электропроводностью. Из светлых монофлорных медов самую низкую электропроводность имеет акациевый мед — 0,0165 см/м, а самую высокую липовый — 0,0573 см/м. Из темных видов меда наибольшую электропроводность имеет гречишный мед — 0,0734 см/м, что и подтверждается более высоким содержанием зольных элементов.